
261POP PERFORMANCE MODEL

A PERFORMANCE MODEL OF THE
PARALLEL OCEAN PROGRAM

Darren J. Kerbyson1

Philip W. Jones2

Abstract

In this paper we describe a performance model of the
Parallel Ocean Program (POP). In particular, the latest
version of POP (v2.0) is considered, which has similarities
and differences to the earlier version (v1.4.3) as com-
monly used in climate simulations. The performance model
encapsulates an understanding of POP’s data decompo-
sition, processing flow, and scaling characteristics. The
model is parametrized in many of the main input parame-
ters to POP as well as characteristics of a processing
system such as network latency and bandwidth. The
performance model has been validated to date on a
medium-sized (128 processor) AlphaServer ES40 system
with the QsNet-1 interconnection network, and also on a
larger scale (2048 processor) Blue Gene/Light system.
The accuracy of the performance model is high when
using two standard benchmark configurations, one of
which represents a realistic configuration similar to that
used in Community Climate System Model coupled cli-
mate simulations. The performance model is also used to
explore the performance of POP after possible optimiza-
tions to the code, and different task to processor assign-
ment strategies, whose performance cannot be currently
measured.

Key words: Performance modeling, large-scale systems,
performance analysis, ocean modeling

1 Introduction

The Parallel Ocean Program (POP) is an ocean general
circulation model used for ocean and climate research. It
is used in a variety of applications, including very high
resolution eddy-resolving simulations of the ocean
(Smith et al., 2000; Maltrud and McClean, 2005) and as
the ocean component of coupled climate models such as
the Community Climate System Model (Blackmon et al.,
2001). The combination of high resolution to resolve
ocean eddies and long time-scales required for climate
and deep ocean circulation requires very high perform-
ance computing. The climate and ocean communities
have access to a wide variety of such high performance
computers with architectures ranging from clusters of
commodity processors to vector machines such as the
Cray X1 and Japanese Earth Simulator. POP has there-
fore been designed to run efficiently across a wide vari-
ety of platforms and good performance across platforms
has been demonstrated (Dunnigan et al., 2003; Jones et
al., 2004). In the most recent releases of POP, a flexible
data decomposition scheme has been introduced to fur-
ther increase the performance portability of the model.

The importance of analyzing, optimizing, and under-
standing the performance of large-scale applications such
as POP increases as both systems and applications grow
in size and in complexity. The performance of a system
results from an interplay between the hardware architec-
ture, the communication system, and the workload.
Knowledge of the processor design, memory hierarchy,
interprocessor and network system, and workload map-
ping is necessary in order to understand the factors that
impact the achievable performance.

An important approach that provides insights into the
achieved performance is that of performance modeling.
Performance models can be constructed that encapsulate
the key performance characteristics of a workload while
also being parametrized in terms of the main characteris-
tics of a machine. Performance models can be used, for
instance, to examine the performance of systems without
the need for extensive empirical analysis, to help identify
performance bottlenecks, and provide input for tuning
the application for a particular system. In addition, a per-
formance model can be used to effectively replace many
of the benchmarking activities for a machine of interest
by providing reliable performance predictions for large-
scale systems using measurements from only a small-
scale system. Moreover, models can be used in situations

The International Journal of High Performance Computing Applications,
Volume 19, No. 3, Summer 2005, pp. 261–276
DOI: 10.1177/1094342005056114
© 2005 Sage Publications

1PERFORMANCE AND ARCHITECTURE LABORATORY (PAL)
COMPUTER AND COMPUTATIONAL SCIENCES DIVISION
(CCS-3) LOS ALAMOS NATIONAL LABORATORY

2THEORETICAL DIVISION (T-3) LOS ALAMOS NATIONAL
LABORATORY (PWJONES@LANL.GOV)

262 COMPUTING APPLICATIONS

which are not measurable; for instance, in exploring the
performance of design alternatives in future machines, or
considering the impact of code changes in advance of
implementing them.

The approach that we take in constructing a performance
model is application centric. It involves understanding the
processing flow in an application, the key data structures,
how they use and are mapped to the available resources,
and the effects of scaling. An analytical performance
model of the application is constructed from this under-
standing. The aim is to keep the model of the application
as general as possible but be parametrized in terms of the
application’s key characteristics. The model is based on a
static analysis of the code and is parametrized in terms of
the code’s dynamic behavior (i.e. those features which are
not known through a static analysis).

We have had many successes using this performance
modeling approach in the modeling of deterministic par-
ticle transport codes on structured (Hoisie et al., 2000),
unstructured meshes (Kerbyson et al., 2003; Mathis and
Kerbyson, 2005), with non-deterministic particle trans-
port (Mathis et al., 2005), and with hydro codes (Kerby-
son et al., 2001). These performance models have been
used in numerous performance studies, for example in
the comparison of the Earth Simulator to other systems
(Kerbyson et al., 2005), exploring possible future archi-
tectures (Kerbyson et al., 2002), and in the verification
and performance optimization of ASCI Q at Los Alamos
(Petrini et al., 2003).

There is a spectrum of different approaches to mode-
ling the performance of systems and applications of which
our application centric approach is only one. For example,
trace data of both the sequential and parallel activity are
often used to predict performance. An initial performance
model of POP has been described using such an approach
(Carrington et al., 2005). All of these modeling approaches
can be used to help understand the measured perform-
ance, and allow certain what-if type performance ques-
tions to be analyzed across machines and configurations.

In this paper we first describe the POP model itself in
Section 2, particularly those aspects of the model rele-
vant to computational performance. In Section 3, we
detail the performance model of POP, which is validated
against performance measurements on two systems in
Section 4. In Section 5 we use the performance model to
explore two performance scenarios which cannot be cur-
rently measured, namely the impact of code optimiza-
tions and in considering different task assignments to
processors in a system.

2 Overview of POP

POP solves the primitive fluid equations on a sphere
under the hydrostatic and Boussinesq approximations,

and is based on previous models of Bryan (1969), Cox
(1984), Semtner (1986) and Chervin and Semtner (1988)
that use depth as the vertical coordinate. In the horizontal,
POP supports any generalized orthogonal grid, including
displaced-pole (Smith and Kortas, 1995) and tripole (Mur-
ray, 1996) grids that move the grid pole into land masses
to avoid excessively small grid spacing near the pole sin-
gularity in latitude–longitude grids. Spatial derivatives
are computed using second-order differencing on a stag-
gered grid with velocities located at the logical north-east
corner of tracer cells. Simulations begin from an initial state
and are integrated forward in time using different meth-
ods for the baroclinic and barotropic modes. The fastest
wave mode in the ocean is an external gravity wave mode,
called the barotropic mode due to its uniform structure in
the vertical. In POP, this two-dimensional barotropic
mode is formulated as an elliptic equation for the surface
pressure and is solved using a preconditioned conjugate
gradient (PCG) solver (Dukowicz and Smith, 1994). The
baroclinic portion explicitly integrates the three-dimen-
sional fluid equations using a leapfrog scheme with peri-
odic averaging steps to damp the leapfrog mode. Various
physical parametrizations, subgrid models and other fea-
tures are available (Smith and Gent, 2002).

POP can be run in either serial or parallel mode and
can use thread-based (OpenMP) parallelism, message
passing interface (MPI), or a hybrid of the two. A flexi-
ble data decomposition scheme (described in Section 2.2)
is used to decompose the horizontal grid; the vertical grid
remains local. Halo regions or ghost cells are used to
minimize communications by keeping local copies of
nearest-neighbor information for cells on the edges of a
domain. The explicit three-dimensional baroclinic solver
is the most computationally intensive and, with a halo
depth of two, can be integrated with only a single ghost
cell update of most prognostic fields. The preconditioned
conjugate gradient solver for the barotropic mode con-
sists of a two-dimensional nine-point stencil operator fol-
lowed by global reductions necessary for the PCG
iteration. The barotropic solver is therefore dominated by
many small messages and relatively few floating point
operations (flops).

2.1 MODEL CONFIGURATION

For a given simulation, POP is configured using a combi-
nation of compile-time parameters and run-time inputs.
Due to the difficulty of generating realistic bottom topog-
raphy that also satisfies numerical constraints, a particular
grid and bottom topography are used for many simula-
tions. A few common configurations are made available
for benchmarking purposes. The first is a test configura-
tion that uses an internally generated grid and idealized
topography. This configuration requires no input files

263POP PERFORMANCE MODEL

beyond a simple configuration file and is ideally suited
for initial benchmarking without needing to deal with I/O
portability issues. A second configuration, called the x1
(by one), is a one-degree (100 km) resolution grid with
realistic topography and the grid pole displaced into
Greenland. It is configured as closely as possible to the
way POP is used for long climate simulations. A third
configuration, called the x0.1, is a very high resolution
1/10 degree (10 km) grid configured as closely as possi-
ble to eddy-resolving simulations. In this paper, we only
consider the first two configurations as the third requires
very large computing resources.

A wide variety of run-time inputs govern the choice of
physical parametrizations and numerical methods. Here,
we are only concerned with a few main compile-time and
run-time inputs that directly affect the computational per-
formance of the model. These parameters primarily relate
to the data decomposition as shown in Figures 1 and 2.
This is described below.

2.2 DATA DECOMPOSITION

Beginning with version 2.0 of POP, a flexible data
decomposition scheme is used. For the horizontal grids
supported in the model, the domain is logically rectangu-
lar with a few special cases. The horizontal grid is there-
fore decomposed into two-dimensional blocks using a

Cartesian decomposition. The block size is chosen by the
user based on the particular machine architecture; blocks
can be small for machines with small caches, but can be
made large for vector processors. The size of a block is
defined by the input parameters block_size_x and
block_size_y. Thus, the number of cells per block is
block_size_x × block_size_y × km, where km
is the depth, and the number of blocks is nx_global/
block_size_x × ny_global/block_size_y
assuming that the block sizes are both factors of the global
horizontal dimensions nx_global and ny_global,
respectively (note that this latter factorization assumption
is not required; POP will internally pad the domain when
the block sizes are not factors of the horizontal dimensions.)

The arrangement of a block is shown in Figure 1.
Block(i,j) is shown along with its four neighboring
blocks, two in each dimension. The view is shown for the
two horizontal dimensions and the third dimension
(depth) extends into the page. Each block has a halo of
ghost cells, permitting tasks to proceed independently
with minimal communication and synchronization. The
halo increases the size of a block to (block_size_x
+ nghost×2) × (block_size_y + nghost×2
× km, and also increases boundary surfaces between
blocks.

Once the domain is decomposed into blocks, blocks
with only land points are eliminated and the remaining
blocks are distributed across processors. Multiple blocks
may be assigned to each node, permitting both load bal-
ancing and hybrid parallelism with message passing
between nodes and threading over multiple blocks within
a processor. The distribution of blocks can be based on a
static load balancing or can be a simple Cartesian distri-
bution that simplifies communications. Different distri-
butions can be chosen for the baroclinic and barotropic
modes to permit an optimal distribution for the compu-
tationally intensive baroclinic solver and the commu-
nication intensive barotropic solver. Example block
distributions are shown in Figure 2. Figure 2(a) shows an
example global domain of 40 × 20 cells, which are
decomposed into blocks of size either 20 × 10 (Figure
2(b)) or 5 × 5 (Figure 2(c)). Blocks that contain only land
are eliminated. A rake algorithm (Fonlupt et al., 1998) is
used first in the X dimension, followed by the Y dimen-
sion to load-balance the blocks across the processors
(Figure 2(d)). Note that when one block is assigned to
each processor, for example in Figure 2(b)), the distribu-
tion is the same as used in the previous version of POP
(v1.4.3), and no load-balancing is performed.

3 POP Performance Model

Our approach to modeling the performance of applica-
tions is to measure the single processor performance and

Fig. 1 A block in the two-dimensional data decompo-
sition of POP.

264 COMPUTING APPLICATIONS

to combine this with a model of the required parallel
activities. The single processor performance can be either
measured, for available systems, or provided as output
from an architecture simulator in the case of a future sys-
tem. There are two main parallel activities in POP, as fol-
lows.

Boundary exchanges. A stencil operator is used in the
finite differencing in both the baroclinic and baro-
tropic calculations. Boundaries in the horizontal
dimensions need to be transferred between logical
neighboring processors.

Global reductions. The PCG solver used in the baro-
tropic calculation requires two to three global sum-
mations to be performed per solver iteration.

The communication and computation stages of POP
are centered on a simulation step. A step can represent a
varying amount of actual simulation time. Each involves
a single call to both the baroclinic and barotropic calcula-
tions as well as a number of other operations. Note that
the baroclinic and barotropic calculations constitute most
of the run-time. We concern ourselves with modeling the
performance of the run-time of POP; this can be subse-
quently used to determine the processing rate (simulation
days per hour for example). One simplification we take
in this work is to use the Cartesian distribution in which
one block is assigned to each processor. This also has an
advantage in that the performance model can also be
directly applied to the earlier version of POP (v1.4.3).
Modeling the full flexibility of block distributions intro-

Fig. 2 Example data decomposition scheme in POP showing (a) original global domain, (b) Cartesian assignment
for a block size of 10 ×××× 20, (c) decomposition using 5 ×××× 5 blocks, and (d) distribution of 5 ×××× 5 blocks to four proces-
sors.

265POP PERFORMANCE MODEL

duces a broad parameter space in terms of block size, dis-
tribution of blocks, and total workload. For example,
smaller block sizes result in more land point elimination,
resulting in a reduction in the total workload. The model
may be extended to include the case of multiple blocks
per processor but will require additional information spe-
cific to a particular problem configuration (including the
actual number of blocks per processor, and details on the
communicating processor pairs used for the boundary
exchanges). Despite the difficulties in modeling multiple
blocks and flexible distribution schemes, the current
model and the results below can provide some insight
into performance using multiple blocks per processor;
this will be discussed briefly in Section 4.1.

The run-time of POP, when considering only the baro-
clinic and barotropic calculations, can be described as

TPOP(P, N, G) = Tbaroclinic(P, N, G)

 + Tbarotropic(P, N, G) (1)

where P = [Px, Py] is the number of processors in the two
horizontal dimensions, N = [Nx, Ny, Nz] is used to denote
the size of the global domain in the horizontal dimensions
and depth respectively, and G is the number of ghost cells.

The run-time of the baroclinic is given by

Tbaroclinic(P, N, G) = Tbaroclinic_comp(P, N, G)

+ Nbound_clinic · Tbound_ex (P, N, G) (2)

and the run-time of the barotropic is given by

Tbarotropic (P, N, G) = Tbarotropic_comp(P, N, G)

+ Nbound_tropic · Tbound_ex (P, N, G)

+ Nglobal_sums · Tglobal_red(P). (3)

Both the baroclinic and barotropic times are separated
into a sequential computation time, Tbaroclinic_comp() and
Tbarotropic_comp(), and a communication time, which in the
case of the barotropic includes both the boundary
exchange time, Tbound_ex(), and the global reduction time,
Tglobal_red(). The number of each of these operations is
defined as Nbound_clinic and Nbound_tropic for the boundary
exchanges, and Nglobal_sums for the global reductions. The
computation and communication performances are descri-
bed separately below.

3.1 COMPUTATION TIME

POP is commonly used in a strong-scaling processing
mode in which parallelism is used to solve the same

problem size in a reduced amount of time. In this case,
the number of cells per processor decreases with increas-
ing processor count. The time taken to process a cell is
dependent on the parts of the memory hierarchy used and
can vary. For instance, a smaller problem per processor
may utilize the memory cache to a greater extent than a
larger problem.

The baroclinic compute time is modeled as

 Tbaroclinic_comp(P, N, G) = Block_size (P, N, G)

· Tbaroclinic_cell(Block_size (P, N, G)) (4)

and similarly the barotropic compute time is modeled as

 Tbarotropic_comp(P, N, G) = Block_size (P, N, G)

· Tbarotropic_cell(Block_size (P, N, G)) (5)

where the time per cell is given by Tbaroclinic_cell(), and
Tbarotropic_cell(). The size of a block, Block_size(P,N,G),
assuming one block per processor is given by

Block_size (P, N, G) .(6)

For blocks that contain a mixture of land and ocean
points, computations are normally performed on land
points, as performing extra computations is frequently less
expensive than a conditional computation. Block_size is
therefore a reasonable measure of the work performed in
each block. Both the baroclinc and barotropic times per
cell, Tbaroclinic_cell(), and Tbarotropic_cell(), need to be meas-
ured for a range of block sizes. Examples of these meas-
urements are provided in Section 4 for two processing
systems.

3.2 PARALLEL ACTIVITIES

A boundary exchange is performed in two steps: one for
the east–west (horizontal X dimension), and one for the
north–south (horizontal Y dimension) exchange. Each
exchange is done by two calls to MPI_Isend and two calls
to MPI_Irecv followed by an MPI_Waitall. This is done
to overlap any on-processor copies that may exist when
multiple blocks are assigned to a processor; MPI is not
used to perform such local copies. Note that the bounda-
ries in either or both horizontal dimensions may be
defined as cyclic or closed. When using cyclic bounda-
ries, the boundary on the lowest side of the global domain
logically neighbors the highest side of the global domain.

From an execution of POP the number of boundary
exchanges was found to be

Nz

Nx 2 G⋅+
PX

------------------------ 
  Ny 2 G⋅+

Py

------------------------ 
 ⋅ ⋅=

266 COMPUTING APPLICATIONS

Nbound_clinic = ((nsteps – 1) × 2 × Nz, and Nbound_tropic

(7)

for the baroclinic and barotropic calculations, respec-
tively. nsteps is the number of simulation steps, Av_scans
is the average number of the PCG solver iterations per
step, and ncheck is a further POP input, which defines the
number of iterations between a check for convergence of
the PCG solver. Convergence of the PCG solver is speci-
fied by solv_convrg, the convergence criteria to be
achieved, and solv_max_iters, the maximum number of
iterations performed if the convergence criteria are not
met.

The time to perform a single boundary exchange is
modeled as

Tbound_ex (P, N, G) = Tcomm(8 · Nx · G, Px · Py, Cx)

+ Tcomm(8 · Ny · (G + 1),Px · Py, Cx) (8)

where the boundary surfaces transferred in the X and Y
dimensions are (Nx.G) and (Ny.(G + 1)) eight-byte words
respectively, and Cx and Cy represent the message con-
tention for the X and Y boundary exchanges, respectively.
The message contention results from the assignment of
the tasks onto a particular system network topology and
impacts the bandwidth term of Tcomm. This is discussed in
Section 3.3. Tcomm(S,P,C) is the time taken to perform a
bi-directional communication of size S bytes on a system
of size P processors with a contention factor of C; the
actual formulation of this is described below.

The number of global summations in the barotropic
calculation, each of a single word, was found to be

Nglobal_sum = nsteps . (9)

The number of the parallel boundary exchanges and glo-
bal summations, in equations (7) and (9), are valid for the
inputs used in this work. The cost of performing a global
summation can be modeled in a number of ways depend-
ing on its implementation. Here we consider it to be
either measured for each processor count in a system, or
modeled as log2(P) stages in a binary tree reduction
operation, which is multiplied by 2 (since the operation is
effectively a reduction followed by a broadcast).

A piecewise linear model for the communication time
is assumed which uses the latency, Lc, and bandwidth, Bc,
of the communication network in the system. The effec-
tive communication latency and bandwidth vary depend-
ing on the size of a message and also the number of
processors used (for instance, when dealing with intran-

ode or internode communications for a symmetric multi-
processor (SMP) based machine):

. (10)

The communication model utilizes the bandwidth and
latencies of the communication network observed in a
single direction when performing bi-directional communi-
cations, as is the case in POP for the boundary exchanges.
They are obtained from a ping-pong type communication
microbenchmark, which is independent of the application
and in which the round-tip time when performing bi-
directional communications is measured while varying
the message size (typically increasing the message size in
powers of 2). This should not be confused with the peak
uni-directional communication performance of the net-
work or peak measured bandwidths from a performance
evaluation exercise.

3.3 TASK ASSIGNMENT

The arrangement of blocks across the processors in a sys-
tem can significantly impact the performance of the
boundary exchanges. When assuming a single block
assigned to each processor, the logical arrangement of
blocks is two-dimensional in a Px and Py array. However,
the processors within a system may not be physically
arranged in a two-dimensional array topology. We illus-
trate the assignment of tasks to two types of systems with
different interconnection network topologies. The first is
a cluster of SMP nodes interconnected with a fat-tree net-
work, and the second is a three-dimensional torus net-
work. These networks correspond to two types of high
performance systems, including the ASCI Q machine at
Los Alamos, and the Blue Gene/Light system recently
introduced by IBM; the performance of both are ana-
lyzed further in Section 4. A three-dimensional torus net-
work is also being used in the new Cray XT3 system, and
the Raytheon TORO system.

An example fat-tree network is that implemented in
the Quadrics QsNet-1 network (Petrini et al., 2002). This
has been used in many AlphaServer systems in which the
QsNet implements a quaternary fat-tree with each leaf of
the tree connecting a four-way SMP. Each processor
within the SMP shares a single channel for communicat-
ing to other nodes in the system. In such cases when a
boundary exchange is performed, contention for the com-
munication channel will occur due to multiple bounda-
ries being exchanged between processors on different
nodes. This can be seen more clearly in the example
shown in Figure 3. The four processors in the central
node will communicate boundaries to the four processors
in each of the nodes to the north and to the south, and to

nsteps 4 Av_scans 1
1

ncheck
------------------+ 

 ×+ 
 × 

 =

1 Av_scans 2
1

ncheck
------------------+ 

 ×+ 
 ×

Tcomm S P C, ,() Lc S P,() C S
1

Bc S P,()
--------------------⋅ ⋅+=

267POP PERFORMANCE MODEL

only one processor in each of the nodes to the east and
the west. When performing the north and south boundary
exchanges a total of eight boundary exchanges will con-
tend for a single communication channel, and when com-
municating east and west boundary exchanges only two
boundary exchanges will contend. The fat-tree offers a
high degree of locality independence; the location of the
neighboring nodes in the fat-tree is not important because
the message communication performance is mostly insen-
sitive to location. Note that different assignments of
processes to processors may have different contention
characteristics.

Conversely, the assignment ordering is important
when a three-dimensional torus network is considered.
For example, the best assignment of a logical two dimen-
sional array into a three-dimensional torus will be where
each X–Y plane of processors represents a rectangular
subarray of the original array. An example of this is
shown in Figure 4(a). Alternate planes of the torus would
be indexed in increasing and decreasing X coordinates,
and increasing and decreasing Y coordinates. The index-
ing is shown on the outer row and columns of numbers in
Figure 4. This assignment results in no contention for any
X-dimension boundary exchanges, and a small degree of
contention for Y-dimension boundary exchanges (at the
edges of the X–Y processor planes). Communications in
the Z dimension of the torus are those that cross the dot-
ted X–Y plane boundaries in Figure 4(a).

An alternate, simpler, three-dimensional torus assignment
is one where processors are indexed in X, Y, Z ordering,
and the first row of tasks in the logical two-dimensional
array is just assigned to the first processors in the first X–

Y plane, and so on as shown in Figure 4(b). We consider
this is being simpler since the application process rank
matches directly the processor ID in the X, Y, Z ordering.
Here, contention occurs on most Y-dimension boundary
exchanges. It can be seen that the exact layout of the com-
munications can become quite complex, especially when
adaptive routing in the network is used.

Note that the different assignment schemes, such as the
optimum and simpler schemes above, are not under appli-
cation control. They typically result from a system operation
in which process IDs can be mapped to physical proces-
sors using a mapping function. In Blue Gene/L the notion
of “floor-plans” is used to describe this mapping function.

A summary of the communication contention for
boundary exchanges is listed in Table 1 for processor
counts up to 1024 for a fat-tree with four-way SMP
nodes, and a three-dimensional torus network. Two cases
are shown for the torus, that using an optimum assign-
ment and that using the simpler X–Y–Z order assignment.

In the case of the fat-tree, the message contention does
not increase when using 64 or more processors. In the case
of the torus, the contention in the Y-dimension continues
to increase in both cases. Note that the dimension of the
torus is assumed to be 8 × 16 × 16. Only closed bounda-
ries are considered in the contention factors in Table 1, a
similar analysis for cyclic boundaries can be done.

3.4 APPLICATION INPUT PARAMETERS

The performance model input parameters are based on
the observations made using the test, and x1 inputs. The
parameters representing the problem setup that currently

Fig. 3 Boundary exchanges required between processors on a four-way SMP node.

268 COMPUTING APPLICATIONS

drive the performance model are listed in Table 2. Also
listed are the values used for the test and x1 inputs. Note
that POP is typically used in a strong-scaling mode; that
is, the overall spatial domain size, as defined in the input,
remains constant no matter how many processors are
used to solve it. This results in smaller subgrid sizes
(blocks) mapped onto a processor with increasing proc-
essor count. POP may also be used in a weak-scaling
mode in which the overall problem size scales with the
number of processors but this is not typical. The system
input parameters, and their values, are discussed in Sec-
tion 4.1.

4 Performance Model Validation

Before a performance model can be used, its prediction
accuracy needs to be verified against observed perform-
ance on existing systems. In the validation presented
here, two systems were used for measuring the perform-
ance of POP. The first is an AlphaServer Cluster contain-

ing 128 processors, which is similar in architecture to the
ASCI Q machine at Los Alamos. The second is a small
version of the Blue Gene/Light system being built by
IBM containing 2048 nodes.

The AlphaServer cluster contained 32 four-way ES40
SMP nodes. Each processor was an Alpha EV68 with 8
MB L2 cache running at 833 MHz. The Alpha can issue
two floating-point operations per cycle. The nodes are
interconnected using the Quadrics QSnet-1 fat-tree net-
work, which has a large-message bandwidth of approxi-
mately 200 MB/s, and a small message latency of 6 µs in
this system. Details of the Quadrics network are
described by Petrini et al. (2002).

Each Blue Gene/Light node consisted of a dual core
embedded PowerPC 440 processor with a shared 4 MB
L3 cache running at 700 MHz. Each core can issue four
floating-point operations per cycle. Nodes are intercon-
nected in a three-dimensional torus topology. Each com-
munication channel in the network has a nearest-neighbor
small message latency of 3.5 µs and a large message

Fig. 4 Assignment of an 8 ×××× 8 two-dimensional array of tasks to a 4 ×××× 4 ×××× 4 three-dimensional torus of processors.
(a) Optimum assignment in which each X–Y plane contains a rectangular sub-array of the total task array. (b) Non-
optimum assignment using a default X–Y–Z processor indexing.

269POP PERFORMANCE MODEL

bandwidth of 175 MB/s. The testing below used only one
of the processor cores per node (known as co-processor
mode). Note that when using both processor cores, an
increase in performance between a factor of 1.1 and 1.9
has been observed on other applications (Almasi et al.
2004; Davis et al. 2004), but this will depend on the impact
of increased communication cost and the ratio of commu-
nication to computation in a particular configuration.

4.1 SYSTEM INPUT PARAMETERS

The single processor performance is an input to the POP
performance model. The run-times of both the barotropic
and baroclinic routines were measured while varying the
size of the spatial domain. The time spent in the baro-

tropic and baroclinic routines were recorded when using one
processor per node, and in the case of the AlphaServer,
when using all four processors in the node. Both cases are
required for the model as contention for resources can
occur when using all processors within a node, which can
significantly degrade the achieved performance. This con-
tention is usually a result of having to share resources within
the node and includes congestion on the memory buses.

Measured performance on both the AlphaServer and
Blue Gene/Light machines is shown in Figures 5(a) and
(b) for the baroclinic and barotropic, respectively. This is
shown for the test input while varying the input spatial
domain size. The baroclinic performance is shown in
terms of time taken per cell per step. The barotropic per-
formance is shown in terms of the time taken per cell per

Table 1
Contention factors for a fat-tree interconnect with four-way SMPs, and a three-dimensional torus
interconnect

Fat-tree Three-dimensional torus (8 × 16 × 16)

Processor count Four-way SMP Optimum Simple

P Px Py Cx Cy Cx Cy Cx Cy

2 2 1 1 0 1 1 1 1

4 2 2 2 2 1 1 1 2

8 4 2 2 4 1 1 1 2

16 4 4 2 8 1 1 1 2

32 8 4 2 8 1 1 1 1

64 8 8 2 8 1 1 1 1

128 16 8 2 8 1 1 1 2

256 16 16 2 8 1 1 1 2

512 32 16 2 8 1 2 1 4

1024 32 32 2 8 1 2 1 4

2048 64 32 2 8 1 4 1 8

4096 64 64 2 8 1 4 1 8

Table 2
Application input parameters to the POP performance model

Parameter Test x1 Description

Nx (nx_global) 192 320 Overall spatial domain size in X

Ny (ny_global) 128 384 Overall spatial domain size in Y

Nz (km) 20 40 Number of layers (depth) in the spatial grid

G (nghost) 2 2 Number of ghost cells

nsteps 20 50 Number of simulation steps

solv_ncheck 10 10 Number of PCG iterations between convergence checks

Av_nscans 69 179 Average number of PCG iterations per step

270 COMPUTING APPLICATIONS

step per PCG iteration. All measurements are shown in
terms of the processing time per processor. Note that the
performance when using the x1 input has the same char-
acteristic but was found to take a factor of 2.25 longer.

It can be noted that the time per cell increases when
using all four processors in an AlphaServer node (mainly
due to memory contention). The distinct regions in the
curve are due to the memory hierarchy of the Alpha
microprocessor. This can be seen clearly in the case of the
baroclinic. A small problem size can fit into the L2 cache
(left-hand side of each curve), a large problem predomi-
nantly uses main memory (right-hand side), and part
cache and part main memory utilization occurs in
between. This result can be used to estimate the optimal
block size for this microprocessor and can restrict the
block size range to explore when assigning multiple
blocks per node in the full flexible decomposition strat-
egy. Block size effects on land point elimination will be
harder to model, although smaller blocks are always bet-
ter for land point elimination. In addition, the block size is
only part of the performance and modeling the full per-
formance in the non-Cartesian case will also require an
updated estimate of communication costs, given that

some boundary exchanges will be local and others may
occur between blocks that are no longer on neighbor
processors in a load-balanced distribution. Such exten-
sions to the performance model will be examined in
future work. The same cache effect occurs in the baro-
tropic case. The memory footprint used by barotropic is
much less than that used by baroclinic. The transition
from cache to main memory occurs at a far higher number
of cells per processor (almost a factor of 100 higher).

As depicted in Figure 5, the single processor/single
node performance can be modeled as a piecewise linear
curve. This is an approximation and can lead to an error
in the input to the performance model. A summary of the
system inputs to the performance model is given in
Table 3. The piecewise linear formulation of the commu-
nication model, in terms of Lc and Bc, can be clearly seen
for different ranges of the message size in Table 3. These
are based on the measurements of bi-directional ping-
pong microbenchmark as discussed earlier. Note that the
time taken to perform a global reduction, Tglobal_red(), was
measured for each processor count on Blue Gene/L and
was assumed to be 2*log(p) times the uni-directional
message latency on the AlphaServer.

Fig. 5 POP processing time on one and four processors of the AlphaServer, and one processor of Blue Gene/L as a
function of the problem size per processor: (a) time per cell in baroclinic and (b) time per cell per PCG iteration in
barotropic.

271POP PERFORMANCE MODEL

Note that for each system modeled values for each of the
system input parameters, as listed in Table 3, are required.
For an existing system, the computation costs can be
obtained from executing POP using a range of global grid
sizes on a single node, and the communication values
obtained via microbenchmarks. In the case of a future
system, these values may be available from a simulator or
be stated as the expected performance on such a system.

4.2 MEASURED AND PREDICTED
PERFORMANCE

The measured and predicted performance of POP for the
AlphaServer cluster using the test input is shown in Fig-
ure 6(a), and using the x1 input in Figure 6(b). Note that
markers indicate a measurement and a curve indicates
model predictions. The time spent in baroclinic and baro-
tropic is shown separately, and the total is simply the
summation of the baroclinic and barotropic times. In a
production simulation, there is some additional work out-
side baroclinic and barotropic, including some I/O for
forcing input and diagnostic output. These are generally a
very small fraction (< 10%), so modeling only the baro-
clinic and barotropic portions of the code captures the
bulk of the work and is the most predictable and repro-
ducible measure. The measured and predicted perform-
ance of POP on the Blue Gene/L system is shown in
Figure 7 using the test input. No measurements have yet
been made on the x1 input. The prediction accuracy is
high in all cases.

It can be seen in Figures 6 and 7 that the baroclinic
dominates the run-time at low processor counts but scales
well with increasing processor count. However, the baro-
tropic performance scales up to approximately 512 proc-
essors on both the AlphaSever cluster, and the Blue Gene/
L system and becomes the dominate component in the
run-time. This is a consequence of the number of global
summations required while the amount of work per cell
performed is low. The scaling for both of these machines
is actually reasonably good due to the good performance
of both of the networks for collective operations.

Similarities can be seen in Figure 6 when using the x1
input. Prediction accuracy is again very high. In this case
the barotropic is expected to scale (i.e. execution time
decreases) to approximately 1024 processors. A summary
of the model prediction errors is given in Table 4. The
maximum error across all the tests was 14%, and a typical
error is in the range 3–5%. Note that the errors result from
an underprediction in almost all cases. This is expected as
the performance of POP includes the main characteristics
of what the application is doing. It does not include exter-
nal events, such as operating system kernel activities or
daemons, which may negatively impact on the achieved
performance. Such external events have been shown to

Table 3
System input parameters to the POP
performance model

Parameter AlphaServer
Blue

Gene/L
Description

P 1..4096 1..4096 processor
count

Pnode 4 1 processors
per node

Tbaroclinic_cell(E)

P < 4 (µs)

P 4 (µs)

(µs)

1.96 + 0.2
Ln(E)

baroclinic
computa-
tion time
(per cell)

Tbarotropic_cell(E)

P < 4 (ns)

P 4 (ns)

15 ns

barotropic
computa-
tion time
(per cell per
PCG itera-
tion)

Lc(S,P)

P 4 (µs)

P > 4 (µs)

(µs) MPI latency

Bc(S,P)
P 4 (ns)

P > 4 (ns)

(ns) MPI time
per byte

5.0 E 11K≤
3.0Ln E() 22.3– 11K E 250K< <
11.3 E 250K>






≥
8.1 E 11K≤
4.1Ln E() 28.8– 11K E 250K< <
21.0 E 250K>






5.5 E 1M≤
3.5Ln E() 4.2– E 1M>




≥
6.5 E 1M≤
7.3Ln E() 9.5– E 1M>




≤
15.0

15.0

27.2





11.0

9.7

14.5





S 32≤
32 S 512< <
S 512≥

S 64≤
64 S 512< <
S 512≥

4.15 S 32≤
3.91 32 S 512< <
7.46 S 512≥






≤
0

25.6

3.3





0

27.3

12.7





S 32≤
32 S 512< <
S 512≥

S 64≤
64 S 512< <
S 512≥

6.3 S 32≤
12.1 32 S 512< <
6.5 S 512≥






272 COMPUTING APPLICATIONS

have a significant impact on application performance on
large-scale systems (Petrini et al., 2003). A single operat-

ing daemon occurring on a single node can delay the
progress of the whole application if it occurs just prior to
a global synchronization such as an allreduce in the baro-
tropic phase of POP. This effect increases with system
size. Systems such as the AlphaServer have a copy of
almost the full operating system running on each node,
which can significantly impact performance. In contrast,
the Blue Gene/Light system has only a microkernel oper-
ating system, which does not have much functionality and
no daemons; this does not impact application perform-
ance significantly even at large processor counts.

5 Use of the Performance Model

Once the model has been validated, as detailed in Section
4, it may be used in a range of performance studies, such
as examining of the performance of possible future
systems, or quantifying the impact on performance of
changes to the application code. This is one of the main
benefits of developing a performance model – to easily
explore performance situations which cannot easily be
measured. In this section. we consider two performance
questions of interest, as follows.

i. What will be the improvement in performance if
the number of global summations was reduced to

Fig. 6 Measured and predicted run-times of POP on the AlphaServer cluster (a) using the test input and (b) using
the x1 input.

Fig. 7 Measured and predicted run-times of POP on
the Blue Gene/L system using the test input.

273POP PERFORMANCE MODEL

one per PCG iteration instead of the current two
(e.g. D’Azevedo et al., 1993; Dongarra and Eijk-
hout, 2003) as is currently being introduced into
POP by Bryan (private communication).

ii. What will be the improvement in performance if
tasks are optimally assigned to processors in the
BlueGene/L three-dimensional torus rather than
the using the default X–Y–Z indexing?

The first question is answered though a slight modifica-
tion to the model, namely replacing the two global sum-
mations per PCG iteration in equation (9) to just one. The
second question is answered by changing the message
contention parameters, Cx and Cy, from the default X–Y–
Z indexing values to the optimum values as listed in
Table 1.

An analysis of both of these questions was undertaken.
The performance improvement that may result from a
change in the number of global summations is shown in
Figure 8(a) for the AlphaServer system, and in Figure 8(b)
for the Blue Gene/L system. The expected performance
improvement increases with processor count. It reaches
almost 30% on the barotropic time on the test input, and
20% on the x1 input on a 2048 processor AlphaServer. On
the Blue Gene/L system, a performance improvement of
34% is expected on a processor count of 2048. Note that
the overall performance improvement is less than the
improvement in just the barotropic time since the per-
formance of the baroclinic remains unchanged.

The performance improvement that may arise from
using an optimum assignment on an 8 × 16 × 16 Blue
Gene/L system is shown in Figure 9. Here the perform-

Table 4
Summary of the POP model prediction errors across all validation tests

AlphaServer (test) AlphaServer (x1) Blue Gene/L (test)

max. avg. max. avg. max. avg.

Baroclinic 13.3 % 3.9 % 4.6 % 2.0 % 10.7 % 5.4 %

Barotropic 7.5 % 3.7 % 12.7 % 4.3 % 14.0 % 4.3 %

Total 11.2 % 3.4 % 4.7 % 2.0 % 10.1 % 4.0 %

Fig. 8 Expected performance improvements on the barotropic and total run-time resulting from a reduced number
of global summations per PCG iteration: (a) AlphaServer for both test and x1 inputs, and (b) Blue Gene/L for the test
input.

274 COMPUTING APPLICATIONS

ance improvement mirrors the differences in the values of
Cx and Cy as listed in Table 1 for the two assignment meth-
ods. When using 2048 processors, the expected perform-
ance improvement of POP using the test input is 11%.

These two studies provide an insight into the possible
performance improvements that can arise from both an
optimization of the application code, as well as an opti-
mization of the task assignment across a processing sys-
tem. These performance studies can be readily undertaken
by altering either the inputs to the performance model, or
altering slightly the model formulation.

6 Conclusions

We have constructed a detailed performance model of
POP which is very accurate across input and problem
sizes. The model is parametrized in terms of the main
inputs that are specified in the input of the actual applica-
tion, and also in terms of the performance characteristics
of the communication network as well as the assignment
of tasks to processing nodes in the system.

Two inputs to POP have been used to examine the
effectiveness of the model: the test input, which is used
for benchmarking purposes, and the degree 1 resolution
model, which is used in production runs in coupled cli-
mate simulations. Accuracy of the performance model is
very good and matched closely measured performance
on a 128 processor AlphaServer, and a 2048 node Blue

Gene/Light system for both of the main two routines of
baroclinic and barotropic. Typical errors were found to
be in the range 3–5% across a range of tests.

Once validated, the model can be used to explore a
multitude of performance scenarios prior to the code
being executed on the target system. Two such perform-
ance studies were undertaken in this work. The first was
to consider the performance improvement that may arise
if the number of global summations was halved from two
to one per PCG iteration in the barotropic, and the second
was to consider the difference in performance when
using two alternative task assignment methods in the
three-dimensional torus of Blue Gene/L.

We envisage using the performance model of POP here
to compare performance across a range of systems for
which the performance has not been measured. It will also
find use in the development of new systems, to examine
performance in advance of implementation, such as the
systems being proposed and developed in the DARPA
HPCS program. We also plan to use an extended perform-
ance model to examine optimal block size and block dis-
tributions for the POP 2.0 decomposition scheme.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for very
helpful comments that have improved this paper. This
work was performed in part under the U.S. Department
of Energy (DOE) Office of Science Climate Change
Prediction Program and Scientific Discovery through
Advanced Computing (SciDAC) program, in part under a
U.S. DOE Office of Science contract, and in part under a
DARPA HPCS contract. Los Alamos National Labora-
tory is operated by the University of California for DOE
under contract W-7405-ENG-36. We would also like to
thank Bob Walkup and Jose Moirera for the access to the
Blue Gene/Light system and for their expert support.
This paper has been authored by a contractor of the U.S.
Government under the above contract. Accordingly, the
U.S. Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Govern-
ment purposes.

AUTHOR BIOGRAPHIES

Darren Kerbyson joined Los Alamos National Labora-
tory in 2001. Prior to this he was a senior Lecturer in
Computer Science at the University of Warwick in the
UK. He has been active in the areas of performance mod-
eling, parallel and distributed processing systems, and
image analysis for the last 15 years. He has worked on
many performance orientated projects funded by the
DOE, European Esprit program, UK Government, ONR,

Fig. 9 Expected performance improvements on the
baroclinic, barotropic and total run-time on Blue Gene/
L resulting from using an optimum three-dimensional
torus assignment for the test input.

275POP PERFORMANCE MODEL

and DARPA. He has published over 80 papers in these
areas and has taught many courses at undergraduate and
postgraduate levels as well as supervising numerous
Ph.D. students. He is currently involved in the modeling
of large-scale applications on large-scale tera systems at
Los Alamos. Recent work has included an analysis of the
Earth Simulator, BlueGene/L, Cray XT3, and numerous
cluster systems. His work on the performance analysis of
ASCI Q during its installation lead to the best paper
award at SC in 2003. He is also the recipient of the Los
Alamos Achievement Award in both 2003 and 2004.

Phil Jones is the project leader of the Climate, Ocean
and Sea Ice Modeling Project within the Theoretical Fluid
Dynamics Group at Los Alamos National Laboratory. He
is also the lead software developer of the POP ocean
model. His research interests include coupled climate
modeling, ocean modeling, remapping and interpolation
and computational performance of climate models. He
holds a Ph.D. in astrophysical, planetary and atmospheric
Sciences from the University of Colorado and a B.S. in
physics and mathematics from Iowa State University.

References

Almasi, G. et al. 2004. Unlocking the performance of the Blue-
Gene/L supercomputer. Proceedings of the IEEE/ACM
Supercomputing Conference, Pittsburgh, PA.

Blackmon, M. et al. 2001. The Community Climate System
Model. Bulletin of the American Meteorological Society
82:2357–2376.

Bryan K. 1969. A numerical method for the study of the circu-
lation of the world ocean. Journal of Computational Phys-
ics 4:347.

Carrington, L., Snavely, A., and Wolter, N. 2005. A perform-
ance prediction framework for scientific applications.
Future Generation Computer Systems. Special issue on
large-scale system performance modeling and analysis,
Elsevier, Amsterdam, in press.

Chervin, R. M. and Semtner, A. J. 1988. An ocean modeling
system for supercomputer architectures of the 1990s. Pro-
ceedings of the NATO Advanced Research Workshop on
Climate–Ocean Interaction, M. Schlesinger, editor, Klu-
wer, Dordrecht.

Cox, M. D. 1984. A primitive equation, three-dimensional
model of the ocean. GFDL Ocean Group Technical
Report No. 1, GFDL/NOAA, Princeton, NJ.

D’Azevedo, E. F., Eijkhout, V. L., and Romine, C. H. 1993.
Conjugate gradient algorithms with reduced synchroniza-
tion overhead on distributed memory multiprocessors.
Computer Science Technical Report CS-93-185, Univer-
sity of Tennessee, Knoxville.

Dongarra, J. and Eijkhout, V. 2003. Finite-choice algorithm
optimization in conjugate gradients. Computer Science
Technical Report UT-CS-03-502, University of Tennes-
see, Knoxville.

Dukowicz, J. K. and Smith, R. D. 1994. Implicit free-surface
method for the Bryan–Cox–Semtner ocean model. Jour-
nal of Geophysical Research 99:7991–8014.

Dunnigan, T. H., Fahey, M. R., White, J. B., and Worley, P. H.
2003. Early evaluation of the Cray X1. Proceedings of the
IEEE/ACM Supercomputing Conference, Phoenix, AZ.

Fonlupt, C., Marquet, P., and Dekeyser, J.-L. 1998. Data-paral-
lel load balancing strategies. Parallel Computing
24:1665–1684

Hoisie, A., Lubeck, O., and Wasserman, H. J. 2000. Perform-
ance and scalability analysis of teraflop-scale parallel
architectures using multidimensional wavefront applica-
tions. International Journal of High Performance Com-
puting Applications 14(4):330–346.

Jones, P. W., Worley, P. H., Yoshida, Y., White, J. B. III, and
Levesque, J. 2005. Practical performance portability in
the Parallel Ocean Program (POP). Concurrency and
Computation: Practice and Experience 17(10):1317–1327.

Kerbyson, D. J., Alme, H. J., Hoisie, A., Petrini, F., Wasser-
man, H. J., and Gittings, M. 2001. Predictive performance
and scalability modeling of a large-scale application. Pro-
ceedings of the IEEE/ACM Supercomputing Conference,
Denver, CO.

Kerbyson, D. J, Hoisie, A., and Wasserman, H. J. 2002. Explor-
ing advanced architectures using performance prediction.
Innovative Architecture for Future Generation High-Per-
formance Processors and Systems, IEEE Computer Soci-
ety Press, Los Alamitos, CA, pp. 27–37.

Kerbyson, D. J, Hoisie, A., and Pautz, S. 2003. Performance
modeling of deterministic transport computations. Per-
formance Analysis and Grid Computing, V. Getov, M.
Gerndt, A. Hoisie, A. Malony, and B. Miller, editors, Klu-
wer, Dordrecht, pp. 21–39.

Kerbyson, D. J., Hoisie, A., and Wasserman, H. J. 2005. A per-
formance comparison between the Earth Simulator and
other terascale systems on a characteristic ASCI work-
load. Concurrency and Computation: Practice and Expe-
rience 17:1219–1238.

Maltrud, M. E. and McClean, J. L. 2005. An eddy-resolving
global 1/10 degree ocean simulation. Ocean Modelling
8:31–54.

Mathis, M. M. and Kerbyson, D. J. 2005. Performance mode-
ling of unstructured mesh particle transport computations.
International Journal of Supercomputing in press.

Mathis, M. M., Kerbyson, D. J., and Hoisie, A. 2005. A per-
formance model of non-deterministic particle transport on
large-scale systems. Future Generation Computer Sys-
tems. Special issue on large-scale system performance
modeling and analysis, Elsevier, Amsterdam, in press.

Murray, R. J. 1996. Explicit generation of orthogonal grids for
ocean models. Journal of Computational Physics 126:251.

Petrini, F., Feng, W. C., Hoisie, A., Coll, S., and Frachtenberg,
E. 2002. The Quadrics network: high performance cluster-
ing technology. IEEE Micro 22(1):46–57.

Petrini, F., Kerbyson, D. J., and Pakin, S. 2003. The case of the
missing supercomputer performance: achieving optimal
performance on the 8192 processors of ASCI Q. Proceed-
ings Of the IEEE/ACM Supercomputing Conference,
Phoenix, AZ (awarded best paper).

276 COMPUTING APPLICATIONS

Semtner, A. J. Jr. 1986. Finite-difference formulation of a world
ocean model. Advanced Physical Oceanographic Numeri-
cal Modeling, J. J. O’Brien, editor, Reidel, Dordrecht.

Smith, R. D. and Gent, P. 2002. Reference manual for the Par-
allel Ocean Program (POP). Los Alamos Unclassified
Report LA-UR-02-2484.

Smith, R. D. and Kortas, S. 1995. Curvilinear coordinates for
global ocean models. Los Alamos Unclassified Report
LA-UR-95-1146.

Smith, R. D., Maltrud, M. E., Bryan, F. O., and Hecht, M. W. 2000.
Numerical simulation of the North Atlantic ocean at 1/10
degree. Journal of Physical Oceanography 30:1532–1561.

